Andrey Kotlarski

Andrey Kotlarski

28.VI1.2011




Andrey Kotlarski




Andrey Kotlarski

One of the oldest programming languages still in use
Actually a family of languages

Academic wing (Scheme), industrial wing (Common
Lisp, maybe Clojure)

Starting in days of limited hardware, it's quite efficient

Accidentally or not, raised by the Artificial Intelligence
pioneers and for long time being the standard there

Lots of groundbreaking ideas for its time, most of them
have slowly crept to mainstream and are now taken for
granted (garbage collection, dynamic typing, tree data

structures, interactive development)

Easy to implement, has standards, lots of realisations

Based on Alonzo Church’s lambda calculus




Never quite in the mainstream, but with somewhat
growing interest in recent years

Andrey Kotlarski

Aging standard but the language doesn't feel
handicapped

HyperSpec, excellent documentation

Lots of implementations, 2 of them commercial

The most popular open source implementation SBCL
(Steel Bank Common Lisp) is actually the fastest and
written in. .. Common Lisp

Small community but with increasingly better library
support

Lots of great books

Known usage includes 3D graphics suits, game engines,
semantic web reasoning systems, knowledge and rule
based systems, theorem provers, compilers, algebra
systems, telecom systems, fare search engine. ..




Multi-paradigm: supports procedural, functional and ZedievlRetiarski
object-oriented styles out of the box

Minimal, consistent syntax based on S-expressions

Code is data

Programmer has essentially everything that the language
creators have had, great extensibility

Dynamic typing with optional type annotation
Read Eval Print Loop

Supports incremental development

Efficiently compiled

Macros

Condition system
CLOS




S-expressions (lists) are actually the abstract syntax tree  [SEG—_—GT—
that directly feeds the lisp compiler

Each S-expression returns a value

Evaluating non empty list normally asks the environment
for the function/macro represented by the first symbol.

When function, rest of the list is treated like arguments
that are also evaluated and passed to the function.

(some-function arguments that are first evaluate

When macro, rest of the list is treated like arguments
that are passed as they are to the macro.

(some-macro arguments passed as they are)

Lists are treated as function/macro invocations unless
quoted

’(some list with unevaluated elements)




Lexical scope by default, with a twist

Example (Closures)

(let ((counter 0))
(defun inc—counter ()
(incf counter))

(defun dec—counter ()
(decf counter)))

Andrey Kotlarski




Example (Dynamic aka special variables)

(defparameter xdebugx nil)

(defun bla—bla ()
(no—debugging)
(let ((xdebugx t))
(do—some—stuff—with—debugging))
(no—debugging))

Andrey Kotlarski




Andrey Kotlarski

First class citizens
Anonymous functions
Functions as data

Multiple return values




Andrey Kotlarski

Program life-cycle
Run-time vs. compilation
Macro expansion time
Programming the compiler

Almost like functions on the outside

Programming over the source code with all the power of
the language




Andrey Kotlarski

Beyond exception handling

Conditions and restarts

Condition handlers

Example (handler-case similar to catch)

(handler—case
(progn
(do—stuff)
(do—more—stuff))
(some—exception (se) (recover se)))




Andrey Kotlarski

Example (restart-case)

(defun parse—log—file (file)
(with—open—file (in file :direction :input)

(loop for text = (read—line in nil nil)
while text
for entry = (restart—case

(parse—log—entry te
(skip—log—entry () ni
when entry collect it)))




Andrey Kotlarski

Example (handler-bind)

(defun log—analyzer ()
(handler—bind
((malformed—log—entry—error
#'(lambda (c)
(invoke—restart 'skip—log—entry))
(dolist (log (find—all—logs))
(analyze—log log))))

Signals, why just errors

Restarts at lower levels, handlers at higher




Andrey Kotlarski

Message passing
Decoupling classes from methods

Generic functions
Method combinations
Multimethods




Andrey Kotlarski




Andrey Kotlarski

Practical Common Lisp

HyperSpec

Common Lisp the Language, 2nd Edition

On Lisp: Advanced Techniques for Common Lisp

Common Lisp: A Gentle Introduction to Symbolic
Computation

Paradigms of Artificial Intelligence Programming

Structure and Interpretation of Computer Programs



http://www.gigamonkeys.com/book/
http://www.lispworks.com/documentation/HyperSpec/Front/
http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/clm.html
http://www.paulgraham.com/onlisptext.html
http://www.cs.cmu.edu/~dst/LispBook/
http://www.cs.cmu.edu/~dst/LispBook/
http://www-mitpress.mit.edu/sicp/

Andrey Kotlarski

CLiki

CL resources

Implementations: A Survey

Quicklisp - CL package manager

SLIME: The Superior Lisp Interaction Mode for Emacs
Dr. Edmund Weitz's great libraries

Steel Bank Common Lisp

Some SBCL benchmarks

Franz Inc.
LispWorks



http://www.cliki.net/index
http://www.common-lisp.net/
http://common-lisp.net/~dlw/LispSurvey.html
http://www.quicklisp.org/
http://common-lisp.net/project/slime
http://weitz.de/
http://www.sbcl.org/
http://shootout.alioth.debian.org/u64/which-language-is-best.php
http://franz.com
http://www.lispworks.com

Land of Lisp- The Music Video!

Andrey Kotlarski

Secret alien technology


http://www.youtube.com/watch?v%3DHM1Zb3xmvMc

HOW A COMMON LISP PROGRAMMER VIEWS
USERS OF OTHER LANGUAGES

Andrey Kotlarski

o
PERL PYTHON  RUBY

i 2

EMACS LIsP COMMON
A SCHEME R CLOJURE

n'l

A . v g/ \\ =Y
@ l )

vj«ﬁ ! .Aﬁh}:
FORTH FACTOR HASKELL SMALLTALK ERLANG

13

Lispers



Java C PHP Ruby Haskell Lisp 20

= & Ii i Java fans
s l:! - g
é [ C fans
- IV 3
s . PHP fans
g Ak \
‘ . ‘ . N Ruby fans
: Y e
e
%
. £ Haskell fans
&
1 ~ & ‘ Lisp fans
; pr N

Fanboys



	Quick Overview
	The Language
	A bit of code
	Resources
	Fun

