
Quick overview The language from bird’s-eye Pros and cons Resources Fun

Haskell (pure and lazy, yet functional)

Andrey Kotlarski

9.I.2012

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Outline

Quick overview

The language from bird’s-eye

Pros and cons

Resources

Fun

Quick overview The language from bird’s-eye Pros and cons Resources Fun

History and stuff

• Unification of efforts in lazy functional programming

• A lot of theory underneath

• Academy driven, cutting edge research

• Evolving standard

• Glasgow Haskell Compiler being the canonical implementation

• Avoid Success at All Costs

I fear that Haskell is doomed to succeed.
– C.A.R. Hoare

Quick overview The language from bird’s-eye Pros and cons Resources Fun

History and stuff

• Unification of efforts in lazy functional programming

• A lot of theory underneath

• Academy driven, cutting edge research

• Evolving standard

• Glasgow Haskell Compiler being the canonical implementation

• Avoid Success at All Costs

I fear that Haskell is doomed to succeed.
– C.A.R. Hoare

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Theoretical base

• (Typed) λ -calculus

• Category theory

• Hindley-Milner(-Damas) type inference

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Technical merits

• Purely functional

• Lazy (non-strict)

• Polymorphic strong static typing

• Elegant (sort of), math inspired syntax

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Technical merits

• Purely functional

• Lazy (non-strict)

• Polymorphic strong static typing

• Elegant (sort of), math inspired syntax

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Pure functional?

• Program is a tree of nested expresions

• Functions are the base building unit
• No side effects by default

• like in mathematic functions

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Functions

• Pattern matching

map : : (a −> b) −> [a] −> [b]
map _ [] = []
map f (x : x s) = f x : map f x s

• Curring
• Function of N arguments is actually an application of N

1-argument functions

map (5 +) [1 . . 1 0]

• Composition

map (negate . sum . t a i l) [[1 . . 5] , [3 . . 6] , [1 . . 7]]

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Lazy?

• Evaluation order
• Thunks

• Delayed computations

i n t ∗ take (i n t amount , i n t c o l l e c t i o n [])
{ . . . }

• Don’t compute anything until/unless required

take 10 $ map (5 +) [1 . .]

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Strong static typing?

• Each expression has a type known at compile time
• so do functions

• Our types determine a theorem and compiling is a proof of its
correctness within the Haskell world

• common theme for such advanced type systems

• Polymorphic types
Prelude> :t filter

f i l t e r : : (a −> Bool) −> [a] −> [a]

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Algebraic data types

• Union of possible values or value constructors

data Bool = False | True

data Car = Car {model : : Str ing
, y e a r : : In t
, burnTime : : In t
} der i v ing (Show)

• Type parameters

data Maybe a = Nothing | Just a

data Tree a = EmptyTree | Node a (Tree a)
(Tree a)

der i v ing (Show , Read , Eq)

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Typeclasses

• Interfaces sort of
• If it quacks like a duck, it’s a duck

c l a s s Eq a where
(==) : : a −> a −> Bool
(/=) : : a −> a −> Bool
x == y = not (x /= y)
x /= y = not (x == y)

instance (Eq m) => Eq (Maybe m) where

Just x == Just y = x == y
Nothing == Nothing = True
_ == _ = False

Quick overview The language from bird’s-eye Pros and cons Resources Fun

I/O vs Purity
• The IO Monad
• Reverse words

main = do
l i n e <− getLine
i f nu l l l i n e

then return ()
e l s e do

putStrLn $ reve r s eWords l i n e
main

r eve r s eWords : : Str ing −> Str ing
r e ve r s eWords = unwords . map reverse . words

• Cool one-liner

main = i n t e rac t $ un l ines .
f i l t e r ((>200) . length) . l i n e s

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Functors

• Don’t confuse with C++ ;-)

• Iterable?
• Lift ordinary function to operate on boxed value

c l a s s Functor f where
fmap : : (a −> b) −> f a −> f b

instance Functor [] where
fmap = map

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Applicative

• Beefed up functors

• Sequence of several boxed actions

c l a s s (Functor f) => Ap p l i c a t i v e f where
pure : : a −> f a
(<∗>) : : f (a −> b) −> f a −> f b

instance Ap p l i c a t i v e Maybe where
pure = Just
Nothing <∗> _ = Nothing
(Just f) <∗> someth ing = fmap f someth ing

• pure f <*> x ≡ fmap f x

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Monoids

• Associative binary function + identity value

• Accumulate a boxed value from several boxes

c l a s s Monoid m where
mempty : : m
mappend : : m −> m −> m
mconcat : : [m] −> m
mconcat = f o l d r mappend mempty

instance Monoid [a] where
mempty = []
mappend = (++)

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Monads
• Beefed up applicatives

c l a s s Monad m where
return : : a −> m a
(>>=) : : m a −> (a −> m b) −> m b

(>>) : : m a −> m b −> m b
x >> y = x >>= _ −> y

f a i l : : Str ing −> m a
f a i l msg = e r ro r msg

instance Monad Maybe where
return x = Just x
Nothing >>= f = Nothing
Just x >>= f = f x
f a i l _ = Nothing

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Benefits

• The pervasive type system gives a lot of information to the
compiler

• many types (pun intended) of bugs are prevented at compile
time

• much room for automatic optimizations
• Data Parallel Haskell

• secure and formally verifiable programs

• Side effects are not the norm and are explicitly specified and
controlled

• easier to reason about
• better concurrency state

• how many languages have a working STM implementation?

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Problems

• There are cases where static typing may not be natural

• For huge systems, you may paint yourself in the corner if
having somehow wrong base

• Laziness makes order of evaluation non-obvious
• trouble with performance bottlenecks identification
• memory spikes

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Links & books

• Official site
• Learn You a Haskell for Great Good!
• The Haskell Programmer’s Guide to the IO Monad - Don’t
Panic.

• Real World Haskell
• Great list of tutorials
• Recent interview with Simon Peyton-Jones

http://haskell.org
http://learnyouahaskell.com
http://stefan-klinger.de/files/monadGuide.pdf
http://stefan-klinger.de/files/monadGuide.pdf
http://book.realworldhaskell.org
http://haskell.org/haskellwiki/Tutorials
http://channel9.msdn.com/Blogs/Charles/YOW-2011-Simon-Peyton-Jones-Closer-to-Nirvana

Quick overview The language from bird’s-eye Pros and cons Resources Fun

Why so serious?

• The Evolution of a Haskell Programmer

http://www.willamette.edu/~fruehr/haskell/evolution.html

	Quick overview
	The language from bird's-eye
	Pros and cons
	Resources
	Fun

